Janus two-dimensional transition metal dichalcogenides

نویسندگان

چکیده

Structural symmetry plays a crucial role in the electronic band structure and properties of two-dimensional materials. In contrast to graphene, monolayer transition metal dichalcogenides exhibit intrinsic in-plane asymmetry with suitable direct bandgaps distinctive optical properties. Efforts have been devoted breaking their out-of-plane mirror by applying external electric fields, vertical stacking, or functionalization. The successful fabrication Janus offers synthetic strategy symmetry, leading variety novel properties, such as piezoelectricity, Rashba spin splitting, excellent exciton Here, we discuss universal approaches unique further present brief perspective on potential applications challenges.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical and chemical tuning of two-dimensional transition metal dichalcogenides.

The development of two-dimensional (2D) materials has been experiencing a renaissance since the adventure of graphene. Layered transition metal dichalcogenides (TMDs) are now playing increasingly important roles in both fundamental studies and technological applications due to their wide range of material properties from semiconductors, metals to superconductors. However, a material with fixed ...

متن کامل

Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides.

Two-dimensional crystals of semiconducting transition metal dichalcogenides absorb a large fraction of incident photons in the visible frequencies despite being atomically thin. It has been suggested that the strong absorption is due to the parallel band or 'band nesting' effect and corresponding divergence in the joint density of states. Here, we use photoluminescence excitation spectroscopy t...

متن کامل

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decade...

متن کامل

Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.

Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at lo...

متن کامل

Three-fold rotational defects in two-dimensional transition metal dichalcogenides

As defects frequently govern the properties of crystalline solids, the precise microscopic knowledge of defect atomic structure is of fundamental importance. We report a new class of point defects in single-layer transition metal dichalcogenides that can be created through 60° rotations of metal-chalcogen bonds in the trigonal prismatic lattice, with the simplest among them being a three-fold s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Physics

سال: 2022

ISSN: ['1089-7550', '0021-8979', '1520-8850']

DOI: https://doi.org/10.1063/5.0095203